Skip to main content

Designing and Implementing a Data Science Solution on Azure (DP-100)

Code: 8532 Category: Tag:

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure.

NEW! AZURE BUNDLES NOW AVAILABLE

This course is now available as part of a multi-course, blended learning premium training bundle for a limited time! Take your Azure skills and career to the next level with multi-modal learning path bundles that lead to certification.

Explore Azure Bundles

Successful Azure Data Scientists start this role with a fundamental knowledge of cloud computing concepts, and experience in general data science and machine learning tools and techniques.

Specifically:

Creating cloud resources in Microsoft Azure.
Using Python to explore and visualize data.
Training and validating machine learning models using common frameworks like Scikit-Learn, PyTorch, and TensorFlow.
Working with containers.

If you are completely new to data science and machine learning, please complete Microsoft Azure AI Fundamentals Training (AI-900).

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

This course can help you prepare for the following Microsoft role-based certification exam — DP-100: Designing and Implementing a Data Science Solution on Azure

Designing and Implementing a Data Science Solution on Azure (DP-100) Delivery Methods
Microsoft Official Course content
Designing and Implementing a Data Science Solution on Azure (DP-100) Course Benefits
Use Azure to services to develop machine learning solutionsDeploy machine learning modelsAutomate Machine Learning with Azure Machine Learning serviceManage and Monitor Machine Learning Models with the Azure Machine Learning service
Azure Data Science Certification Course Outline
Module 1: Getting Started with Azure Machine Learning

In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.

Lessons
Introduction to Azure Machine Learning
Working with Azure Machine Learning

Lab : Creating an Azure Machine Learning Workspace

After completing this module, you will be able to

Provision an Azure Machine Learning workspace
Use tools and code to work with Azure Machine Learning
Module 2: Visual Tools for Machine Learning
Module 3: Running Experiments and Training Models
Module 4: Working with Data
Module 5: Working with Compute
Module 6: Orchestrating Operations with Pipelines
Module 7: Deploying and Consuming Models
Module 8: Training Optimal Models
Module 9: Responsible Machine Learning
Module 10: Monitoring Models

Request Quotes

Register now
CAPTCHA image

Please type the characters This helps us prevent spam, thank you.

Linux and UNIX Tools and Utilities Training

Ethereum Training: Hands-on Ethereum Development Bootcamp

Microsoft Dynamics 365 Fundamentals Customer Engagement Apps Training (CRM) (MB-910)

Modern Deep Learning Techniques using TensorFlow Training

Implementing and Configuring Cisco Identity Services Engine (SISE)

Strategy Implementation Professional Certification Training Bundle

CompTIA A+ Certification Training

Implementing Cisco Enterprise Advanced Routing and Services (ENARSI v1.0) Training

Microsoft 365 Mobility and Security Training (MS-101)

Cisco SD-WAN Operation and Deployment (SDWFND)

arالعربية